MySQL是怎么保证数据不丢失的


MySQL中保证数据不丢失主要是binlog和redo log 的功劳,下面我们就看看MySQL是怎么保证这两种日志不丢失的。

binlog的写入机制

binlog 的写入逻辑比较简单:事务执行过程中,先把日志写到 binlog cache,事务提交的时候,再把 binlog cache 写到 binlog 文件中。

一个事务的 binlog 是不能被拆开的,因此不论这个事务多大,也要确保一次性写入。这就涉及到了 binlog cache 的保存问题。

系统给 binlog cache 分配了一片内存,每个线程一个,参数 binlog_cache_size 用于控制单个线程内 binlog cache 所占内存的大小。如果超过了这个参数规定的大小,就要暂存到磁盘。

事务提交的时候,执行器把 binlog cache 里的完整事务写入到 binlog 中,并清空 binlog cache。状态如下图 所示。

image-20220430115747115

可以看到,每个线程有自己 binlog cache,但是共用同一份 binlog 文件。

  • 图中的 write,指的就是指把日志写入到文件系统的 page cache,并没有把数据持久化到磁盘,所以速度比较快。
  • 图中的 fsync,才是将数据持久化到磁盘的操作。一般情况下,我们认为 fsync 才占磁盘的 IOPS。

write 和 fsync 的时机,是由参数 sync_binlog 控制的:

  1. sync_binlog=0 的时候,表示每次提交事务都只 write,不 fsync;
  2. sync_binlog=1 的时候,表示每次提交事务都会执行 fsync;
  3. sync_binlog=N(N>1) 的时候,表示每次提交事务都 write,但累积 N 个事务后才 fsync。

因此,在出现 IO 瓶颈的场景里,将 sync_binlog 设置成一个比较大的值,可以提升性能。在实际的业务场景中,考虑到丢失日志量的可控性,一般不建议将这个参数设成 0,比较常见的是将其设置为 100~1000 中的某个数值。

但是,将 sync_binlog 设置为 N,对应的风险是:如果主机发生异常重启,会丢失最近 N 个事务的 binlog 日志。

redo log 的写入机制

在具体介绍之前,我们先了解一下 redo log buffer。

redo log buffer 就是一块内存,用来先存 redo 日志的。比如在执行一个 insert 的时候,数据的内存被修改了,redo log buffer 也写入了日志。

但是,真正把日志写到 redo log 文件(文件名是 ib_logfile+ 数字),是在执行 commit 语句的时候做的。如果 redo log buffer 持久到 redo log 之前, MySQL 发生异常重启,那这部分日志就丢了。由于事务并没有提交,所以这时日志丢了也不会有损失。

事务还没提交的时候,redo log buffer 中的部分日志有没有可能被持久化到磁盘呢?

答案是,确实会有。这个问题,要从 redo log 可能存在的三种状态说起。这三种状态,对应的就是下图中的三个颜色块:

image-20220430122338496

这三种状态分别是:

  1. 存在 redo log buffer 中,物理上是在 MySQL 进程内存中,就是图中的红色部分;
  2. 写到磁盘 (write),但是没有持久化(fsync),物理上是在文件系统的 page cache 里面,也就是图中的黄色部分;
  3. 持久化到磁盘,对应的是 hard disk,也就是图中的绿色部分。

日志写到 redo log buffer 是很快的,wirte 到 page cache 也差不多,但是持久化到磁盘的速度就慢多了。

为了控制 redo log 的写入策略,InnoDB 提供了 innodb_flush_log_at_trx_commit 参数,它有三种可能取值:

  1. 设置为 0 的时候,表示每次事务提交时都只是把 redo log 留在 redo log buffer 中 ;
  2. 设置为 1 的时候,表示每次事务提交时都将 redo log 直接持久化到磁盘;
  3. 设置为 2 的时候,表示每次事务提交时都只是把 redo log 写到 page cache。

InnoDB 有一个后台线程,每隔 1 秒,就会把 redo log buffer 中的日志,调用 write 写到文件系统的 page cache,然后调用 fsync 持久化到磁盘。

注意,事务执行中间过程的 redo log 也是直接写在 redo log buffer 中的,这些 redo log 也会被后台线程一起持久化到磁盘。也就是说,一个没有提交的事务的 redo log,也是可能已经持久化到磁盘的。

实际上,除了后台线程每秒一次的轮询操作外,还有两种场景会让一个没有提交的事务的 redo log 写入到磁盘中。

  1. 一种是,redo log buffer 占用的空间即将达到 innodb_log_buffer_size 一半的时候,后台线程会主动写盘。注意,由于这个事务并没有提交,所以这个写盘动作只是 write,而没有调用 fsync,也就是只留在了文件系统的 page cache。
  2. 另一种是,并行的事务提交的时候,顺带将这个事务的 redo log buffer 持久化到磁盘。假设一个事务 A 执行到一半,已经写了一些 redo log 到 buffer 中,这时候有另外一个线程的事务 B 提交,如果 innodb_flush_log_at_trx_commit 设置的是 1,那么按照这个参数的逻辑,事务 B 要把 redo log buffer 里的日志全部持久化到磁盘。这时候,就会带上事务 A 在 redo log buffer 里的日志一起持久化到磁盘。

这里需要说明的是,我们介绍两阶段提交的时候说过,时序上 redo log 先 prepare, 再写 binlog,最后再把 redo log commit。

如果把 innodb_flush_log_at_trx_commit 设置成 1,那么 redo log 在 prepare 阶段就要持久化一次,因为有一个崩溃恢复逻辑是要依赖于 prepare 的 redo log,再加上 binlog 来恢复的。

每秒一次后台轮询刷盘,再加上崩溃恢复这个逻辑,InnoDB 就认为 redo log 在 commit 的时候就不需要 fsync 了,只会 write 到文件系统的 page cache 中就够了。

通常我们说 MySQL 的“双 1”配置,指的就是 sync_binlog 和 innodb_flush_log_at_trx_commit 都设置成 1。也就是说,一个事务完整提交前,需要等待两次刷盘,一次是 redo log(prepare 阶段),一次是 binlog。

这时候,你可能有一个疑问,这意味着我从 MySQL 看到的 TPS 是每秒两万的话,每秒就会写四万次磁盘。但是,我用工具测试出来,磁盘能力也就两万左右,怎么能实现两万的 TPS?

解释这个问题,就要用到组提交(group commit)机制了。

这里,我需要先和你介绍日志逻辑序列号(log sequence number,LSN)的概念。LSN 是单调递增的,用来对应 redo log 的一个个写入点。每次写入长度为 length 的 redo log, LSN 的值就会加上 length。

LSN 也会写到 InnoDB 的数据页中,来确保数据页不会被多次执行重复的 redo log。

如下图所示,是三个并发事务 (trx1, trx2, trx3) 在 prepare 阶段,都写完 redo log buffer,持久化到磁盘的过程,对应的 LSN 分别是 50、120 和 160。

从图中可以看到,

  1. trx1 是第一个到达的,会被选为这组的 leader;
  2. 等 trx1 要开始写盘的时候,这个组里面已经有了三个事务,这时候 LSN 也变成了 160;
  3. trx1 去写盘的时候,带的就是 LSN=160,因此等 trx1 返回时,所有 LSN 小于等于 160 的 redo log,都已经被持久化到磁盘;
  4. 这时候 trx2 和 trx3 就可以直接返回了。

所以,一次组提交里面,组员越多,节约磁盘 IOPS 的效果越好。但如果只有单线程压测,那就只能老老实实地一个事务对应一次持久化操作了。

在并发更新场景下,第一个事务写完 redo log buffer 以后,接下来这个 fsync 越晚调用,组员可能越多,节约 IOPS 的效果就越好。

为了让一次 fsync 带的组员更多,MySQL 有一个很有趣的优化:拖时间。在介绍两阶段提交的时候,我曾经给你画了一个图,现在我把它截过来。

image-20220430151153724

图中,我把“写 binlog”当成一个动作。但实际上,写 binlog 是分成两步的:

  1. 先把 binlog 从 binlog cache 中写到磁盘上的 binlog 文件;
  2. 调用 fsync 持久化。

MySQL 为了让组提交的效果更好,把 redo log 做 fsync 的时间拖到了步骤 1 之后。也就是说,上面的图变成了这样:

image-20220430151239435

这么一来,binlog 也可以组提交了。在执行图中第 4 步把 binlog fsync 到磁盘时,如果有多个事务的 binlog 已经写完了,也是一起持久化的,这样也可以减少 IOPS 的消耗。

不过通常情况下第 3 步执行得会很快,所以 binlog 的 write 和 fsync 间的间隔时间短,导致能集合到一起持久化的 binlog 比较少,因此 binlog 的组提交的效果通常不如 redo log 的效果那么好。

如果你想提升 binlog 组提交的效果,可以通过设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count 来实现。

  1. binlog_group_commit_sync_delay 参数,表示延迟多少微秒后才调用 fsync;
  2. binlog_group_commit_sync_no_delay_count 参数,表示累积多少次以后才调用 fsync。

这两个条件是或的关系,也就是说只要有一个满足条件就会调用 fsync。所以,当 binlog_group_commit_sync_delay 设置为 0 的时候,binlog_group_commit_sync_no_delay_count 也无效了。

我们知道WAL 机制是减少磁盘写,可是每次提交事务都要写 redo log 和 binlog,这磁盘读写次数也没变少呀?

WAL 机制主要得益于两个方面:

  1. redo log 和 binlog 都是顺序写,磁盘的顺序写比随机写速度要快;
  2. 组提交机制,可以大幅度降低磁盘的 IOPS 消耗。

所以如果你的 MySQL 现在出现了性能瓶颈,而且瓶颈在 IO 上,可以通过哪些方法来提升性能呢?

针对这个问题,可以考虑以下三种方法:

  1. 设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count 参数,减少 binlog 的写盘次数。这个方法是基于“额外的故意等待”来实现的,因此可能会增加语句的响应时间,但没有丢失数据的风险。
  2. 将 sync_binlog 设置为大于 1 的值(比较常见是 100~1000)。这样做的风险是,主机掉电时会丢 binlog 日志。
  3. 将 innodb_flush_log_at_trx_commit 设置为 2。这样做的风险是,主机掉电的时候会丢数据。

文章作者: Sky
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Sky !
  目录